Offshore Vessel Vetting Process

Object

This guide identifies the requirements and activities necessary to provide reliable and efficient Vetting Assessment. All marine units within the scope of application shall comply with the Offshore Vessel Vetting Process, including adherence to all applicable Classification, International, local, Port and Flag State Laws and Regulations.

Compliance of vessels with the requirements described below or vessels being rated as Acceptable in the vetting process does not grant the Owner or Operator any right whatsoever to have the vessel chartered or employed by Repsol, nor imposes on Repsol any duty or obligation to charter or employ the vessel, and does not mean the vessel is suitable, for contracting.

Scope of Application

This Offshore Vessel Vetting Process applies to any vessels/units, where the ship's particulars can be described in the OVPQ format and fall within the scope of Corporate Norm 00-00462NO Managing safety and environment in sea and river operations and/or transport, with the following exceptions:

- Bunker barge/vessels are subject to "Vetting Process & Criteria ref T&T-PROC-001/2014".
- Fitness for purpose, including compatibility with the weather limits or Scope of Work definition and limitations.
- Compatibility with shore bases, offshore platforms or other offshore fixed or mobile installations.

Framework regulations (reference regulations)

- Managing safety and environment in sea and river operations and/or transport Norm (00-00462NO)
Offshore Vessel Vetting Process

Type: Guide
Scope: Worldwide
Code: 90-00023GU

Owner: Division of Control, Innovation and Resources
Revision: 0.0

Table of contents

1 Abbreviations
1.1 Acronyms
1.2 Pictograms

2 Vetting Keywords
2.1 Type of contracts
2.1.1 Spot Contract
2.1.2 Short Term
2.1.3 Long Term
2.2 Type of Inspections
2.2.1 OVID inspection
2.2.2 Repsol inspection
2.2.3 BBuu HSE Marine inspection
2.3 Type of results of Vetting assessment
2.3.1 On Hold
2.3.2 Non Assessed
2.3.3 Acceptable
2.3.4 Not Accepted

3 The vetting process
3.1 Introduction
3.2 Preliminary Evaluation
3.3 Vetting Criteria
3.3.1 AGE
3.3.2 NEW BUILDING VESSELS
3.3.3 BALLAST TANKS AND VOID SPACES
3.3.4 CASUALTY REPORTS
3.3.5 CLASS IACS & CLASS RECOMMENDATIONS
3.3.6 STRUCTURAL CAPABILITY
3.3.7 CREW
3.3.8 DRY DOCKING
3.3.9 OVIQ REPORTS
3.3.10 OVPQ
3.3.11 FLAG
3.3.12 P&I CLUB
3.3.13 TECHNICAL OPERATOR
3.3.14 DYNAMIC POSITIONING CAPABLE VESSELS
3.3.15 PERSONNEL TRANSFER
3.3.16 CARGO SYSTEMS
3.3.17 SPECIFIC OPERATIONS
3.3.18 MOORING EQUIPMENT
3.3.19 SMALL CRAFT
3.3.20 OTHER CRITERIA
3.4 Mitigation Process to approve dispensations ................................................................. 27
3.5 Reassessment for vessel rated as Not Accepted ............................................................. 27

4 International reference regulations .................................................................................. 27

5 Appendices .......................................................................................................................... 28
   Appendix I: References ....................................................................................................... 29
   Appendix II: Vetting criteria finder .................................................................................. 33
   Appendix III: Table Age .................................................................................................... 34
   Appendix IV: Repsol HSE Checklist Marine Inspection .................................................. 35
   Appendix V: Definitions .................................................................................................... 36
   Appendix VI: Acronyms ..................................................................................................... 41
   Appendix VI: Personnel Transfer devices ....................................................................... 45
   Appendix VIII: International Associations of Classification Societies – IACS Members .... 49
   Appendix IX: International Group of P&I ...................................................................... 50
   Appendix X: The Vetting work flow ................................................................................ 51

Approval ...................................................................................................................................... 52

Table of Figures

Figure 1. Overview of Preliminary evaluation ........................................................................ 6
Figure 2. The components of the scheme are set out in the following flowchart ....................... 16
Figure 3. Personnel transfer using a ‘Billy Pugh’ ................................................................... 45
Figure 4. Personnel transfer using an ‘Esvagt’ device ............................................................. 45
Figure 5. Personnel transfer using a personnel transfer capsule ........................................... 46
Figure 6. Personnel transfer using an accommodation ladder .............................................. 46
Figure 7. Personnel transfer using a purpose-designed hydraulic gangway .......................... 47
Figure 8. Personnel transfer using a hydraulic bridge ............................................................ 47
Figure 9. Transferring workers via swing ropes, in the Gulf of Guinea area ............................ 48
1 Abbreviations

1.1 Acronyms

See Appendix VI.

1.2 Pictograms

Attention is drawn to specific criteria to be applied on each ship through the graphics shown below.

- Applicable to all vessels
- Applicable on age function
- Depends on contract type
- Depends on type of vessel/operation

2 Vetting Keywords

2.1 Type of contracts

Below are the types of contracts to be considered, depending on the period of time required. For the purposes of these OVVP, a CoA contract will be equivalent to “Short term contract”.

2.1.1 Spot Contract

Defines vessel hires for a time period less than 31 days. In the event that a vessel's contract goes beyond the initial duration, a one-time amendment to the contract may be issued to cover the additional period.

The extra time will be 15 days maximum for Spot contracts. If more time is needed, it will be necessary to comply with the additional requirements of a new type of contract.

2.1.2 Short Term

This type of contract shall be applied for vessel charters from 30 days to no more than 90 days. If the period of the vessel contract goes beyond the initial duration, a one-time amendment to the contract may be issued to cover the additional period.

The extra time will be 30 days maximum for short term. If more time is needed, it will be necessary to comply with the additional requirements of a new type of contract.

2.1.3 Long Term

 Applies to all vessels chartered for more than 90 days.

2.2 Type of Inspections

Throughout this process, we will refer to three types of inspections covering the entire scope of assessment; they may be requested depending on the type of contract, vessel age, or in compliance with any other criteria reflected in this OVVP.
2.2.1 OVID inspection
Carried out by an OCIMF OVID inspector who may be freelance or Repsol staff, based on OCIMF-OVID protocols and standards of inspection.

2.2.2 Repsol inspection
Vetting inspection (non-OVID) that may be carried out by Vetting staff or Freelance, and shall be performed in compliance with OVVP, based on the Repsol Inspection questionnaire which has been with specific attention to Repsol requirements and fundamentals.

Even when the freelance inspector is OVID accredited, this is not an OVID formal inspection, so will not be published nor available for other Oil Companies.

2.2.3 BBUU HSE Marine inspection
Periodical or unannounced inspection carried out on vessels rated as acceptable by Repsol Vetting, this is an inspection covering safety and maritime aspects and it shall be performed following the BBUU questionnaire or HSE Checklist, or whichever has been designated at the specific Contracting procedure. The Repsol HSE Checklist Marine Inspection questionnaire developed by E&P may be used as guidance (see Appendix: IV).

This inspection questionnaire is for internal Repsol use and will not be published nor made available for other Oil Companies or third parties.

2.3 Type of results of Vetting assessment
There are four vessel statuses, as below:

2.3.1 On Hold
A vessel whose Vetting assessment process has not been completed. This status should be for a maximum of 30 days. After this time it will be changed automatically to ‘Non-Assessed’ and a new Commercial interest will be required.

2.3.2 Non Assessed
A vessel without a Vetting assessment process or with inspection expired.

2.3.3 Acceptable
The vessel can be used within the scope of contracts as described above. This is the only rating that allows such usage.

This rating results from a favorable vetting assessment based on information that we have deemed positive and sufficient for acceptance.

The rating of the vessel may be affected by major modifications affecting safety and operational systems, including but not limited to changes of name, technical operator, crew, flag, etc., as well as any incident, casualty or terminal negative feedback report, PSC detention or negative Memoranda or condition of Class.

2.3.4 Not Accepted
The vessel has been rejected as result of the Vetting assessment process.
A vessel under this rating may not be used, with the only exception shown in point 3.4, Mitigation Process, in this document.
3 The vetting process

3.1 Introduction

The vetting process includes collating information relating to the ship, its operation and management to assist in the decision making process. Figure 1 outlines the type of information that may be considered at the preliminary evaluation as part of the vetting process.

The Repsol E&P Vetting Process is fully described in the (Appendix X: The Vetting workflow). It begins with a query of BDEU through the Repsol Vetting website, in order to know the vessel status. There are four possible BDEU statuses, as follows: On Hold, Non-Assessed, Acceptable, Not Accepted.

After BDEU consultation, if the status requires a 'Commercial Interest Request' (if the Vessel is not included in the BDEU or is rated as 'Non-Assessed' or 'Not Accepted') then a request from any Offshore applicant within E&P or Repsol Group should be sent.

The vetting process continues with a Preliminary Evaluation (described in section 3.2). As shown in Figure 1, vetting evaluation should have only three results, as follows; Acceptable, Not Accepted or On Hold. (See section 2.3)
3.2 Preliminary Evaluation

Should a ‘Non-assessed’ vessel be considered under the ‘scope of application’ described in section 1.2, the vessel Operator may need to complete the OVPQ Questionnaire shown on the OCIMF-OVID website, and enclose appropriate supporting documents. Additionally, an OVMSA assessment may be required in some cases, so the Vessel operator must provide full access to this document for Repsol Vetting in due course.

The Preliminary Evaluation will be based on the information provided in the OVPQ together with additional relevant information, under the parameters and criteria described in the next section (3.3 Vetting criteria) and being clear that only vessels which have been screened for compliance with all applicable International and national regulations and any other marine safety standards may be used.

3.3 Vetting Criteria

The authorized user is able to gain access to the vetting database by entering following inputs:

- Vessel’s IMO Number,
- Vessel/operation type,
- Vessel age, and
- Contract Type,

The computer screen then displays the vetting result either a specific criteria list of key points or another data for assessment

A specific criteria list is applied on case by case basis using a dynamic spreadsheet, shown at Appendix II ‘Vetting criteria finder’.

Criteria/Key points will be qualified with the letter |M|‘Mandatory’. |W| after the criteria means 'Weigh', meaning that their weight may be balanced by other circumstances (see Appendix V : Definitions) both will be categorized automatically.

Hereunder you can find a complete description of all the criteria which may be used during OVVP, marked with a pictograms indicating that criteria are applied to vessels according to age, contract, and vessel/operation type.

3.3.1 AGE

A review based on the vessel’s age will apply. The age of the vessel will be calculated from the first delivery. Rebuilding dates will not be taken into account.

Only vessels that have not been detained during last year and whose flag is not blacklisted by Paris MOU, USCG, Tokyo MOU or Viña del Mar Agreement will be considered. The preliminary evaluation will be based between additional information defined on the review of latest OVID inspection.

a. If the assessment result is satisfactory, the vessel will be rated as Acceptable, and an inspection normally will not be necessary. (see Appendix III: Table Age )

b. If the latest OVID report highlights relevant observations, evidence will be requested from the Operator that satisfactory corrective actions have been taken.
c. If the latest OVID report shows very high risk observations and/or the Operator's corrective actions are deemed insufficient, then the vessel will be rated Non-Accepted.

In any case long term vessels must renew the inspection annually as minimum or when has been determined by the age criteria, whichever less time. But must be always a valid inspection, so the inspection must be performed with enough time in advance, then may require that 'Long Term' annual inspection be performed around 11 months or sooner depending on the logistics and the vessel's accessibility.

3.3.1.1 Vessels between 1 and 5 years

Spot & Short Term vessels,

Vessels aged 1 to 5 years, the preliminary evaluation could be based upon the latest OVID inspection being no more than 12 months old and without holding a Repsol Inspection. Points 3.3.1.a, 3.3.1.b and 3.3.1.c before mentioned should be applied and in addition:

i. Vessels not holding an OVID inspection dated within the last 12 months may be deemed Acceptable only for a Spot/Short term contract, and an OVID inspection may not be to carry out till ninety days of contract.

Long Term

Points 3.3.1.a, 3.3.1.b and 3.3.1.c above should be applied, and for a proposed Long Term contract will be applied as follows:

ii. For a Long Term contract, an OVID inspection in the last year will be mandatory to be deemed Acceptable with a Preliminary Evaluation. Otherwise a Repsol inspection must be carried out before lifting contract subjects.

3.3.1.2 More than 5 years old, but less than 15 years old

Spot & Short Term vessels,

Vessels tendered in a Spot and Short Term hire, may be assessed based on the latest OVID inspection being no more than 6 months old, and may be accepted by Vetting with only a Preliminary Evaluation, without a prior Repsol inspection. Points 3.3.1.a, 3.3.1.b and 3.3.1.c before mentioned should be applied and in addition:

i. Vessels proposal for a Spot/short term, which not holding an OVID inspection dated within the last 6 months, the vessel could be deemed Acceptable for a Spot/Short term contract, but an OVID inspection should be carried out never later than the first month.

---

Clerical mistake, inspection OVID is valid for 12 month
3.3.1.3 More than 15 years and less than 20 years old

Spot & Short Term vessels,

Vessels proposed for a Spot / Short term contract, 15 years old or older, holding an OVID no more than 6 months.

They may be deemed Acceptable with a preliminary evaluation proceeding in accordance with points 3.3.1.a, 3.3.1.b and 3.3.1.c before mentioned. But they will be subject to a new OVID Inspection within the period of contract but never later than the first fortnight. In any other case, vessels will be subject to a Repsol inspection before considered for employment.

Long Term,

When the contract proposed is Long Term, Repsol inspection is mandatory before being considered for use.

3.3.1.4 More than 20 years old and less than 50 years old

Spot & Short Term vessels,

For vessels 20 to 50 years old, if the latest Repsol inspection is no older than 6 months, and they have been rated Acceptable, a new Repsol inspection will not be required before lifting contract subjects.

In any other case, prior to lift contract subjects an Acceptable status will be required, based on a new Repsol inspection to be carried out before being considered for use.

Long Term,

For vessels tendered for a Long term contract, in addition to requirements exposed before at 3.3.1.4., they should be periodically inspected every 6 month basis on a Repsol inspection.

3.3.1.5 More than 50 years old

Any vessel 50 years old or older will be rated as Not Accepted.
3.3.2 NEW BUILDING VESSELS

For newly built Vessels or Vessels less than twelve (12) months old, an additional assessment or inspection will be required including but not limited to:

For Newly Built Vessels in Their Maiden Voyage

To be considered on a case by case, but the steps below will be mandatory in all cases:

a. A Repsol representative appointed by the Vetting Department shall be in attendance at Sea Trials. Only applies when vessels are hired for a Long Term category.

b. DP testing (if it is a DP capable vessel)

c. An FMEA and valid DP survey in compliance with IMCA M219 ‘Example specification for a DP FMEA for a new DP vessel’ must be available for the vessel before being considered for employment.

d. Assessment of crew familiarisation is to be carried out;
   i. Based on submission and evaluation of the Crew matrix
   ii. Submission of another Crew Matrix shall be provided for the Shipyard Team, including: Name, Nationality, Qualifications, Years with Company, Years new build experience, Arrival date sign on.

For Vessels Less than 12 Month Old but Not on a Maiden Voyage,

The points; b, c, d. i) above should be applied.

In all cases it will be mandatory to fill in an OVPQ questionnaire and provide all supporting documentation including a copy of the Interim Class Certificate without conditions of class.

In every case Repsol’s own experience with the Owner/Technical Operator will be duly considered.

3.3.3 BALLAST TANKS AND VOID SPACES

Ballast tanks and void spaces’ coating must not be in poor condition (see Appendix V: definitions) and no areas of substantial corrosion must exist.

Vessels shall be subject to a specific class notation covering visual checks and inspection of ballast tanks during scheduled class survey, for example Lloyd’s notation PCWBT, BV notation CPS(WBT) or equivalent.

In special case of Heavy Lift Vessels the Technical operator should confirm that the ballast and bilge systems are covered by an FME(C)A, in accordance with OCIMF/OVID requirements.

3.3.4 CASUALTY REPORTS

Records of casualties, incidents and investigation reports will be evaluated. For this purpose, International databases and relevant organization’s reports should be considered including but not limited to; Lloyd’s MIU (formerly Lloyd’s Marine Intelligence Unit), Equasis, WOAD (formerly World Offshore Accident Databank), Port State Control reports, OVID and OVMSA reports. In some special cases MARS and CMID reports may be considered if provided by the vessel’s operator with relevant information.
3.3.5 CLASS IACS & CLASS RECOMMENDATIONS

All Vessels are required to be classed by a Classification Society that is a member of IACS. Vessels classed by Societies which are not members of IACS will be rejected. Follow this link to consult the IACS Members list; http://www.iacs.org.uk/Explained/members.aspx

Class recommendations on the class certificate may result in vessel rejection.

The Class Status Report; last update (less than 30 days old), needs to be in the possession of Repsol in order to evaluate Memoranda and Conditions of Class or Authority.

- Vessels in shipyard

Without definitive Class certificate or documentation from an IACS society may be acceptable provided that Technical Operators warrant that the vessel will sail from shipyard with valid classification by an IACS society without conditions of class.

3.3.6 STRUCTURAL CAPABILITY

3.3.6.1 Fatigue Analysis

Vessels larger than 150 m in length will need a comprehensive fatigue analysis carried out by an IACS class society.

3.3.6.2 Stack Weight

Information on maximum deck load capacity and deck strength shall be readily available and be in accordance with requirements of class, and documented by means of a valid class certificate.

3.3.6.3 Hull Design

Hull strength shall be in accordance with the prevailing requirements of classification companies and the authorities. This must be documented by means of a valid class certificate.

Table points based on hull design (DH, DS, DB, SH, etc.) will apply.

- Vessels carrying crude oil must always be double hull.
- Vessels of 600 MT SDWT and over, engaged in carriage of heavy grade oils must be double hull.

3.3.6.4 Hull Scantlings - TMR Thickness Measurement Report

For vessels more than 15 years old, a Thickness Measurement Report (TMR) shall be mandatory in the last special survey, IMO Res A.744 (18) may be used as guidance, and in all cases TMR should not be older than 30 months.

Every point where the diminution rate will be more than 15% or 20%, should be subject to special scrutiny and the owner/operator’s treatment of these points will be assessed if the need arises Vessel Vetting acceptance may become invalid.
Offshore Vessel Vetting Process

Where a vessel requires Enhanced Surveys as mentioned in SOLAS XI-1/2 such as an Enhanced Survey Programme or a CAS (Condition Assessment Scheme) then the "Condition Evaluation Report" will be sufficient compliance with this criterion.

3.3.6.5 CAP -Condition Assessment Program

Vessels 20 years old, or more, will need at least a CAP 2 (GOOD) rating for hull, and machinery with a validity of 3 years from the last date of CAP survey. Owners should allow sufficient time for renewing the CAP certificates.

Only for vessels hired on "Spot or Short term" the CAP requirement may be replaced by a TMR, as an exceptional condition.

3.3.7 CREW

3.3.7.1 Marine Crew competence

a. English proficiency is mandatory for all Officers

b. All deck officers attending the bridge should have undergone a BRM course and have documentary evidence of such. For Officers who have not taken a BRM course, the Operator must provide it as soon as practicable.

c. Crew experience, competence, drills, training and familiarization shall be assessed based on the OVIQ questionnaire with due consideration to the vessel type and operation requirements. Experience must be demonstrable with logbooks or standard records.

d. Bridge/Engine officers must hold a minimum qualification of unlimited OOW or EOW as per STCW.

3.3.7.2 Rotation Periods

Depending on vessel type/operations, no rotation periods shall be planned for crew members in excess of 30 days on.

3.3.7.3 Crew Changes

a. Crew changes should take place in port at a shore facility where possible.

b. When a Master, Chief Engineer, or Senior Officer have been newly hired within the last 12 months, the following steps should be observed;

   i) Senior Officers shall not all be changed out at the same time. At least one Senior Officer in each department must remain on board with the new joining crew members.

c. Where point i), cannot be applied, it will be necessary that the relieving officer will have a handover period of at least one week and an on-board induction course be carried out. The Induction course shall be in compliance with Company expectations and requirements, and as per OVMSA 3 - Stage 2.3.

d. When a crane is a class approved for Man Riding, crane Operator and DPOs shall not be changed at the same time.
Offshore Vessel Vetting Process

To ensure that all vessels in the fleet have a competent crews who fully understand their roles and responsibilities and are capable of working as a team, this process shall apply for all Senior Officer in both departments Deck & Engines on all contracted vessels.

### 3.3.7.4 Drug & Alcohol Policies

- The technical operator shall certify that they have an effective Drug and Alcohol Policy in place, complying with OCIMF-OVID “Guidelines for the Control of Drugs and Alcohol Onboard Ship”, stipulating “zero tolerance”.
- This means zero blood alcohol content when onboard the vessel/unit at all times. Neither drug usage nor being in possession of any drugs at any time is allowed.
- The Policy must include unannounced alcohol and drug test by an external body at intervals not exceeding 12 months.
- While on board the vessel/unit, all personnel shall comply with the vessel/unit's D&A policy.

### 3.3.7.5 Smoking Policy

- The technical operator shall certify that they adhere to a smoking restriction Policy, complying with OCIMF-OVID Guidelines.
- There must be no smoking in food preparation areas. Common areas such as restrooms, cafeterias or conference rooms shall be designated non-smoking.
- Inside cabins, engine spaces and in general must be Non-smoking during work. Smoking places should be clearly identified and marked even on open decks.
- Restrictions should include specific controls when the vessel/unit is in the 500 m/ safety zone.

### 3.3.8 DRY DOCKING

Vessels 15 years of age and over must undergo bottom inspection in dry condition by Class, twice during the 5 years class period and shall not exceed a period of 36 months between dockings. Interval between Special / class renewal surveys shall not exceed 60 months.

### 3.3.9 OVIQ REPORTS

OVIQ reports are a mandatory requirement within the Repsol OVVP and these are mainly used for vessel assessment. In addition, only in some special cases, CMID reports may be considered when provided by the vessel’s operator and as a relevant information source, but these do not replace the mandatory required OVIQ report when this is mandatory in these Repsol OVVP (see Appendix III: Table Age).

### 3.3.10 OVPQ

An OVPQ shall be available on board the vessel which shall be properly filled-in and shall have been completed within the previous 12 months.
Offshore Vessel Vetting Process

Vessel operators shall have an updated OVPQ available online (which will be no more than 30 days old), as one of the mandatory requirement for the vessel's Preliminary evaluation. The OVPQ is required to be update following changes in the vessel's status such as, but not limited to:

- After structural modifications have been carried out
- After modification or replacement to main machinery items.

3.3.11 FLAG

Only vessels registered with Flag States which are listed in the Paris MOU White or Grey lists are given first preference when assessing vessels for hire. To these effects, a table based on lists issued by Paris MOU/Tokyo MOU/USCG applies.

Vessels registered with flag states on the MOU black lists may be considered under special circumstances and may be required to undergo additional checks such as conducting physical inspection before clearing the vessel for hire.

3.3.12 P&I CLUB

Owners guarantee that Owners and/or Operators shall maintain full cover of the chartered vessel with a P&I Club member of the International Group of P&I Clubs. Where a vessel is not insured with a member of the International Group of P&I Clubs then a copy of the insurance documents and cover will be required to be reviewed by the Repsol Insurance Department, on a case by case basis.

Special attention shall be paid to War Risk, and Insurance for Oil Pollution Damage will be included as part of Operator insurance. Insurance cover for liabilities arising from offshore and specialist vessels and craft charter parties, contracts and operations will include, but not be limited to:

- Towage
- Special operations
- Submarine diving bells and divers
- Salvage Operations

3.3.13 TECHNICAL OPERATOR

3.3.13.1 Changes of Technical Operator

Changes of Technical Operator and/or Owner must be reported at least 30 days in advance. Any change in vessel operational and or technical Management will signify a significant change in the vessel's onboard and ashore safety management system which could lead to vessel rejection, unless properly managed.

3.3.13.2 Safety Management System

Safety management system which complies with ISM code requirements or an equivalent standard must be implemented on board.
3.3.13.3 OVMSA

- In order to better align with Repsol Vetting expectations and to purposefully drive quality improvement within their management systems, Operators are strongly encouraged to submit their OVMSA (Offshore Vessel Management and Self-Assessment) evaluation to the OCIMF website as one of the mandatory documents required for the vessel's Preliminary evaluation for Long Term contracts.

  In any other contract type, where Operators have not submitted an OVMSA, it is to be provided as soon as practicable.

- Where OVMSA is to be applied, only vessels from technical operators complying with at least stage 1 of the 12 elements will be considered for Preliminary Evaluation. Comments on how this stage is complied with shall be recorded by means of OVMSA evaluation reports recorded on the OVID web site.

- In order to accurately evaluate the technical operator performance, the OVMSA must be updated at intervals not exceeding twelve months.

3.3.14 DYNAMIC POSITIONING CAPABLE VESSELS

3.3.14.1 FMEA

On DP capable vessels, the DP-control system should prevent failures being transferred from one system to another. The essential feature of the DP FMEA is to identify the worst single failure that can occur within the vessel’s total DP system, without loss of station keeping capability. In compliance with MSC/Circ.645 Guidelines for Vessels with Dynamic Positioning Systems, only 'consequence analysis' is required for DP equipment classes in which redundancy of components.

Following this basic guideline, Repsol Vetting mandates DP classes two and three, as a minimum requirement and it shall be strongly recommended for DP class one. The following also applies:

- The FMEA should include analysis of relevant failure modes within any component in accordance with DP class mention of MSC/Circ.645 and as per DP Class notation.

- Operational procedures shall be provided by the Vessel Operator and should be in place to ensure that the set-up and use of the DP related systems conforms to the system design and redundancy.

- It shall be mandatory to carry out a FMEA before the vessel has been delivered and in any case at least every five years (IMO Maritime Safety Committee (MSC) Circular 645, 6 June 1994), or a shorter period when it is determined by a vessel management company assessment included within the SMS or where Annual Trial results indicate that an updated is required. After modifications to or alteration of the vessel power or propulsion, changes in the software, sensors or hardware upgrades the FMEA must be renewed. (The International Marine Contractors Association (IMCA M 178), April 2005)

- It is strongly recommended this should form part of the vessel's SMS and it is therefore the responsibility of the company's shore-based and ship-board management to ensure that it is followed and kept up to date. (The International Marine Contractors Association (IMCA M 178), April 2005)
3.3.14.2 DP COMPETENCE

⇒ Crew and level of DP Certificates

a. It is strongly recommended to have all DP Operators holding a certification as full DP (not limited) and any case all key DP personnel on board should be in compliance with MSC Cir.738 which includes the Nautical Institute Training scheme (see diagram below) and IMCA M117 The training and Experience of key DP personnel.

Figure 2. The components of the scheme are set out in the following flowchart

Diagram Ref: From The Nautical Institute in compliance with IMO MSC Cir.738

b. All Engineers and Electronic Technicians Onboard (ETO) have taken approved training on the DP system. For Officers not holding appropriate special qualification course, the Operator must provide it as soon as practicable.

c. Other kinds of training for DPOs are highly recommended, such as HIPAP systems.

d. When a DP is used within the 500 m safety zone, it is strongly recommended to have a bridge manning team complying with the requirements below as closely as possible (applies to personnel on duty on the bridge, depending on the vessel DP class):

i) DP3 operation, Two DP operators on duty (captain not included)

ii) DP2 operation, Two DP operators on duty

iii) Other DP operational types, to be evaluated case by case, but keeping in mind that a minimum of two personnel capable of manoeuvring the vessel away from the installation should be available on the bridge, best practice should be for both persons to be qualified deck officers.
The DP class referred to here are assigned according to (Guidelines for Vessels with Dynamic Positioning Systems, 1994).

⇒ DP Technical requirements

a. The DP system shall be designed, equipped and operated in accordance with IMO MSC Cir. 645. Failure of the thruster system including pitch, azimuth or speed control should not make the thruster rotate or go to uncontrolled full pitch and speed.

b. DP vessel/unit must be fitted with a DP Data Recorder in compliance with IMCA M103 Rev1-15 including all DP parameters and operator keystrokes. If a data recorder is not yet available it should be provided not later than the next dry dock. An equivalent system may be considered, but it must include a timeframe where data is held for at least a limited period.

3.3.14.3 Footprints

DP footprints shall be regularly recorded and compared against previous footprints and the DP Capability Plots, which shall be developed in place to cover normal and expected operations.

3.3.14.4 Capability Plots

Owners/operators shall place on board a DP Capability Analysis in compliance with IMCA M 140 Specification for DP capability plots.

3.3.14.5 Annual Trials

A copy of the most recent DP annual trial report shall be available on board and the next scheduled within a year +/- 3 months of the anniversary date.

Records shall be placed on board as evidence that any recommendations from DP annual trials have been properly addressed and closed out.

It is highly recommend for the annual trials to be performed by competent third party companies and class witnesses.

3.3.15 PERSONNEL TRANSFER

Whenever personnel transfer operations is under way, reference publications should be available on board and used as guidance:

- Marine Environment Safety Manual (IAGC),
- Guidance on transfer of Personnel to and from Offshore Vessel and structures (IMCA –M202), and
- Guidelines for construction, installation, maintenance and inspection/survey of means of embarkation and disembarkation (IMO MSC.1/Circ.1331).

On every personnel transfer operation where Repsol’s personnel are involved the use of swing ropes are prohibited – this rule is mandatory. Likewise, the use of pilot ladders shall be prohibited for crew changes.
### Offshore Vessel Vetting Process

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guide</td>
<td>Worldwide</td>
<td>90-00023GU</td>
</tr>
</tbody>
</table>

Owner: Division of Control, Innovation and Resources

Revision: 0.0

#### 3.3.15.1 Crane

When a personnel transfer operation is to be carried out by means of crane, the methodology used must be approved for Man Riding operations, and in compliance with (LOLER 98) Lifting Operations and Lifting Equipment Regulations.

In addition the following publications shall be readily available on board and used as guidance:

- OCIMF Guidance; Best Practice for Personnel transfer by Crane,
- Guidance on transfer of Personnel to and from Offshore Vessel (IMCA M202), and
- Guidance on Operational Communications (IMCA M205).

The certification, security and integrity of the entire lifting system, including wire ropes, rigging, shackles, safety slings and hooks and safety devices should be identified and certified as appropriate for man-riding.

Crane devices and specific requirements that are to be included, but not be limited to:

- Free-fall capability lock-out
- Hoisting and lowering limiters
- Rated capacity indicator and limiter
- Schedule of daily inspections of the crane or winch and carrier by a competent person
- Adequate instruction for all persons involved – passenger, operator, supervisor, etc.
- Suitable PPE and Personnel Locator Beacons (PLB) should be worn

#### 3.3.15.2 Crane Operator

Crane Operator must have a man-riding endorsement issued by an independent verification body/company.

#### 3.3.15.3 Man-riding Baskets

a. Manriding baskets (Billy Pugh, Esvagt, and Personnel transfer capsule) shall be subjected to an inspection and certification regimen.

b. The following publications shall be readily available onboard and used for reference:

- IMCA M202 Guidance on the transfer of personnel to and from offshore vessels and structures.
- OCIMF Guidance; Best Practice for Personnel transfer by Crane
- IMCA SEL 08/01 Guidelines on Procedures for Transfer of Personnel by Basket on the UK Continental Shelf

#### 3.3.15.4 Personnel Gangways

As per MSC.1/Circ.1331 11 June 2009 Guidelines For Construction, Installation, Maintenance And Inspection/Survey Of Means Of Embarkation And Disembarkation.
Accommodation ladders and gangways for means of embarkation and disembarkation which are provided on board ships constructed on or after 1 January 2010 should meet applicable international standards such as ISO 5488:1979, Shipbuilding – accommodation ladders, ISO 7061:1993, Shipbuilding – aluminum shore gangways for seagoing vessels and/or national standards and/or other requirements recognized by the Administration. Such accommodation ladders and gangways fitted on ships constructed before 1 January 2010, which are replaced after that date, should, in so far as is reasonable and practicable, comply with these Guidelines.

It is important to highlight that the following items are mandatory by Repsol:

a. Personnel gangways, including motion-compensated hydraulic gangways shall be certified and subject to an inspection programme.

b. Bridges should be fitted with an alarm system triggered by a certain amount of movement.

c. In Gangway transfer from Vessel to Shore, the Gangway or accommodation ladder must be marked with angles of inclination limits, and a certificate must be kept on board with the limits for which it is designed.

3.3.16 CARGO SYSTEMS

Cargo operations shall be in compliance with IMO Resolution A.863 (20) - OSV Code, ‘Code of Safe practice for the Carriage of Cargoes and Persons by Offshore Supply Vessels’. This OSV Code must be followed for any issues pertaining to operations of Offshore Supply Vessels when interfacing with offshore installations, or issues from the carriage of cargoes and personnel, cargo stowage and securing, Port and Offshore installation operations.

Additionally when hazardous substances are involved, IMO Resolution MSC.236(82) LHNS Guidelines- ‘Guidelines for the transport and handling of limited amounts of hazardous and noxious liquid substances in bulk on offshore support vessels’ must be followed, limiting the amount of hazardous substances in bulk as follows:

a. For application of the LHNS Guidelines, “limited quantities” means that the aggregate quantity of bulk liquids as identified in Guidelines does not exceed 800cbm or a volume in cubic meters equal to 40% of the vessel's DWT, whichever is less.

b. For Well-stimulation vessels which are permitted to carry more than the maximum amounts as specified above, these shall meet the subdivision, intact and damage stability requirements of IMO Res.235(82)/A 469(XII) ‘OSV Guidelines - Guidelines for the design and construction of OSV’, but with damage occurring anywhere in the ship's length at any transverse watertight bulkhead.

In addition, to be in compliance with the requirements mentioned above, the points listed below shall be checked, including but not limited to:

I. Loading computer, or simplified stability information is to be Class certificated

II. Tank gauging systems and level alarms. Tanks must be manually sounded at least once per week and compared to remote reading gauges. Discrepancies must be recorded and available to the BCO. Ensure that sounding tubes are not blocked and that sounding pipes are marked indicating the tank served and are fitted with a cap.

III. A Class-approved cargo securing manual shall be required to be carried on board.

IV. Cargo handling operations shall be evaluated to take into account the following:
a. Lifting gear used in cargo handling shall be colour coded, at minimum with a 6 month colour coded inspection and in accordance with OCIMF recommendations; 'Recommendations for the Tagging/Labelling, Testing and Maintenance, Documentation/Certification for Ship's Lifting Equipment'.

b. All pipes loaded on deck must be rigged with cap on both sides in order to avoid water entrapment within tubular cargo.

c. All small cargo items and palletised materials for transfer to and from offshore installations shall be containerised preferentially, UKOOA - Guidelines for the safe Packing and Handling of Cargo to and from Offshore Locations, could be used as guidance.

d. All cargo items to be shipped between shore bases and offshore installations shall be pre-slung. Slinging pallets or pallet carriers is deemed unsafe practice and must be discouraged. We highly recommend the use of a certified Pallet Lifter with the cargo secured with lashing straps.

e. If it is considered necessary tag lines shall be used as follows:
   i. Must be attached to the load (not to sling)
   ii. Use of Two tag lines is recommended.
   iii. Tag lines must be retrieved in order to avoid being close to or under the load.

V. All critical/heavy lifts shall require a lifting plan to be developed prior to commencing the operation. To this effect every lift which is equal or greater than 75% of the crane’s SWL or 25MT will be considered as a Heavy Lift.

VI. No dangerous goods can be loaded without an MSDS or laboratory report.

3.3.17 SPECIFIC OPERATIONS

A specific assessment shall be undertaken in accordance with the vessel type and operational requirements. This must be documented by means of data collected in chapter 8 of the OVIQ questionnaire in accordance with the operations in course and vessel type.

If applicable, a table of points based upon Chapter 8 of OVIQ (operations) will be used.

3.3.18 MOORING EQUIPMENT

All mooring equipment must be examined regularly for damage and records maintained, as mooring equipment comprises all the equipment required to moor and cast off the vessel effectively and safely, including but not limited to; mooring lines (ropes & wires), mooring winch (and winch self-tensioning mode), winch brakes, bitts and static fairleads (chocks), roller fairleads, etc.

The OCIMF publications ‘Mooring Equipment Guidelines 3’ and ‘Effective Mooring’ must be applied as guidelines for the purposes of these Repsol Marine Safety Criteria. Additionally IMCA publication M214 ‘Mooring Practice Safety Guidance for Offshore Vessels', and OCIMF information papers; ‘Guidelines for Specification of Manufacture, Testing and Procurement of High Modulus Polyethylene Ropes’, and ‘Guide to Purchasing High Modulus Synthetic Fibre Mooring Lines (joint SIGTTO publication) may be used as reference.
3.3.19 SMALL CRAFT

Small craft are defined within the ‘Appendix V: Definitions’ of this document. The criteria to be applied differs depending on the offshore application, Offshore Industry; Wind or Oil.

In addition to items contained at the ‘OVIQ 7100 Questionnaire for Small Craft CAT-2’, Operators are strongly encouraged to follow the recommendations contained within the publications listed below, as closely as possible:

- The Safe Management of Small Service Vessels Used In the Offshore Wind Industry 2014 [Offshore Wind Health & Safety Association (G9)]
- IMCA M189 Rev-2, Marine Inspection for Small Workboats

3.3.19.1 Small Craft in the Offshore Wind Industry

3.3.19.1. a - Marine Crew Competence

All marine crew must hold valid deck or engine department STCW Certificates of competency as required by the flag administration for the size of vessel, main propulsion machinery and service restrictions.

If no member of the marine crew is required to hold an engine department COC by the flag administration then at least one crew member must hold a certificate of attendance for a flag administration approved engine course, certificate of proficiency in motor operation or equivalent evidence of competence.

3.3.19. b - Minimum equipment – Navigation safety

Notwithstanding the equipment required by the flag administration or classification society, Operators of service vessels are strongly recommended to fit them with the following equipment:

- A compass providing a true heading;
- Speed and distance measuring device capable of measuring speed through water;
- 9 GHz radar;
- Receiver for global navigation satellite system;
- An echo sounding device; rudder angle indicator (or direction of steering thrust);
- Propeller RPM or thrust indicator (if thruster is provided);
- Nautical Charts on paper corrected to date, sufficient for navigation to a Safe Haven, ECDIS or ECS (of a type approved by the flag administration),
- Automatic Identification System (AIS) class A;
- Vessels must be fitted with radio communications equipment appropriate to the GMDSS Sea Area of operation.

All persons in charge of a navigational watch or assigned duties as part of a navigational watch must have demonstrated competence in the use of such equipment and received training appropriate to the type of equipment and their duties.
3.3.19. c - Management System

All Vessel Operators of this type of craft shall maintain a properly constituted management system including but not limited to:

• A health, safety and environmental protection policy;

• Instructions and procedures to ensure safe operation of the vessel and protection of the environment in compliance with relevant international, flag State and coastal State requirements;

• Defined levels of authority, responsibilities and lines of communication between and among shore Vessel Operator personnel and vessel crew;

• Procedures for reporting incidents, hazards and non-conformities with the vessel or wind farm management system;

• Procedures to prepare for and respond to emergency situations; and

• Procedures for internal audits and management reviews. The Vessel Operator must establish a schedule of internal audits of the management system at least bi-annually and audit reports must be made available on request in order to verify that office managers have visited the boat within the last six months.

System to implement Risk Assessment and Safe Job Analysis for routine and occasional jobs on board. Permit to Work system with clear procedures for:

- General Permit/Cold Work
- High Voltage
- Isolation certificates
- Working in high seas
- Hot Work
- Enclosed Spaces

Familiarisation with the vessel, safety tours for new personnel must be a priority before people start their shifts on board.

Toolbox talks, Safety Meetings, Monthly Protection and Environmental Committee meetings and Welfare meetings need to be carried out and documented.

Procedures for Hygiene and sanitation inspection and working practices must be implemented in the galley and food preparation area. Fresh water treatment with two barriers for disinfection and Fresh Water analysis program.

3.3.19.2 Small Craft in the Offshore Oil Industry

Defined as a boat which is used either as an FPSO/ AHTS daughter craft capable of being lifted on and off a mother ship or in terminal support operations.

Vessel type is normally an asymmetric catamaran with hull form designed primarily as an in-field line handling boat or for hose handling duties of the "OISS PATROLLER" type or equivalent.

For the purposes of this OVVP, 'IMCA M189 Rev-2, Marine Inspection for Small Workboats' may be used as guidance.
3.3.19.2. a – Marine Crew Competence

The same criteria for the Offshore Wind Industry (3.3.19.1.a) are to be applied.

3.3.19.2. b – Navigation safety

These particulars must be considered:

- Aft deck to be fitted with a working platform at the stern to facilitate hose/line handling with a hydraulic capstan built into a plinth on the deck and hose/line handling ramp.
- It is recommended that a towing point with a remotely operated quick release hook, be fitted.
- Wheelhouse to be fitted forward together with folding seating for passengers and in addition a bow access platform for personnel transfers.
- It is recommended that the boat be equipped with a complete arm davit system.
- The fitting of ATEX certified systems is strongly recommended.

3.3.20 OTHER CRITERIA

3.3.20.1 Fire Fighting

a. When a vessel is fitted with a FiFi station it must be in accordance with standards and specifications in compliance with the designated class notation.

b. Condition of monitors must be checked periodically, including pumps, water spray, foam concentrate, etc.

c. The Owner/Vessel operator must ensure that the use of FiFi equipment does not render other equipment unusable, e.g. tunnel thrusters not available, etc.

d. In Vessels fitted with a FiFi II or higher, the crew must be aware of the potential risks of incorrect use of firefighting equipment.

e. Periodical drills must be carried out for proper crew training and there must be a system for training and exercising, unless this is already included and scheduled in the company SMS.

f. In the case of extra machinery on deck, the subcontractor must supply its own firefighting equipment or extinguishers to cover this extra risk.

3.3.20.2 Rescue Gear and Emergency Equipment

a. Emergency equipment and where applicable Rescue Gear must be regularly maintained and ready for use. Consequently a planned maintenance programme and a reporting procedure and notice must be established in every unit in accordance with vessel particulars and specifications.

b. A fixed fire detection and alarm system must be provided at least in the Engine Room and Accommodation area. If installation is not yet available, it must be provided not later than the next dry dock.

c. Procedures for: Rescue from water, Rescue from enclosed spaces, Rescue from heights, would be strongly recommended.
3.3.20.3  **Lifting Equipment**

All lifting materials must be tested and approved by a Certification body/company or an equivalent standard from a Classification Society. IMCA publication M187 Guidelines for Lifting Operations and OCIMF information paper; “Recommendations for the Tagging/Labelling, Testing and Maintenance, Documentation/Certification for Ships’ Lifting Equipment” must be considered as a minimum requirement, including but not limited to the following recommendations:

- Wire rope slings are to be provided with manufacturer standard IWRC Grade 1960 in accordance with BS EN 12385-1 (Steel wire ropes. Safety. General requirements) and BS EN 12385-2 (Steel wire ropes. Safety. Definitions, designation and classification)
- Sling assembly, manufactured in accordance with BS EN 13414-1 (Steel wire rope slings. Safety. Slings for general lifting service)
- Complete assembly, tested and certified suitable for SWL from 0° to 90°
- Sling lengths quoted are from bearing point to bearing point
- All slings: hard stamp on both ferrules with the identification number.
- Shackles to be in accordance with BS EN 13889 (Forged Steel Shackles for General Lifting Purposes. Dee Shackles and Bow Shackles. Grade 6. Safety)
- Steel ferrules only to be used for sling fabrication
- Stretchers and lifting straps for stretchers shall be included in the annual inspection of lifting equipment.
- Lifting gear shall be colour coded, inspected at least every 6 months and colour codes changed by a competent third party.
- All lifting gear must be certified and inspected periodically; records must be kept on board as evidence.
- Lifting equipment must be subject to a planned maintenance programme and a reporting procedure and notice. To be thoroughly examined in use at periods specified in the Regulations (at least six-monthly for accessories and equipment used for lifting people and, at a minimum, annually for all other equipment) or at intervals laid down in an examination scheme drawn up by a competent person, where these are at least as rigorous as noted above.
- It is strongly recommended to have a copy of following documents available on board to be used as guidance:
  - IMCA M187 Guidelines for Lifting Operations
  - OCIMF information paper; “Recommendations for the Tagging/Labelling, Testing and Maintenance, Documentation/Certification for Ships' Lifting Equipment”
- Wire Management must be implemented to follow the history and status of all wires on board.
3.3.20.4 Anchor Handling or Towing

AHTS Operators are strongly encouraged to follow recommendations listed below:

a. Specific crew change requirements. Senior Officers must have had experience on this type of vessel for a minimum of 2 years. In addition, a minimum of two crew members, one of them being the Master or duty officer, to be on the bridge throughout anchor handling operations.

b. All mooring equipment shall have a valid certification and must be inventoried. Mooring equipment including, but not limited to winches, wires, swivels, shackles and any additional equipment required.

c. Voltage measurement devices must be provided.

d. Procedures on minimum clearance distances from subsea infrastructure for the positioning or handling of mooring equipment must be available on board, including, as a minimum, clearance distances from the following: Pipeline including pull direction, Horizontal distance, Vertical height, and adjacent mooring. Anchors shall be located in accordance with company and regulatory requirements around all existing wells, subsea valves, structures and magnetic anomalies.

e. Pelican hooks or long bow spelter sockets shall not be used for anchor handling. The use of alloy ferrule terminations is also to be avoided. Pee Wee sockets of standardized type to be used in Anchor Handling.

f. Minimum Breaking Load (MBL) of towline must follow the IMO Guidelines as follows:
   - Bollard Pull (BP) <40 MBL = 3.0 x BP;
   - Bollard Pull (BP) = 40-90 MBL = (3.8-BP/50) BP;
   - Bollard Pull (BP) >90 MBL = 2.0 x BP (all numbers in tonnes)

g. Synthetic shock lines must have the capability to deal with the expected dynamic loads, as follows:
   - For pulls of less than 40 tonnes: 2 x MBL
   - For pulls greater than 90 tonnes: 1.5 MBL

   Linear between above limits

h. Publication from NWEA ‘Guidelines for the Safe Management of Offshore Supply and Rig Move Operations’ is recommended to be used as guidance.

i. When cargo may be considered as heavy lift (in accordance with the definitions of this document), a Lifting Plan shall be required for any lifting operation.

3.3.20.5 Pollution Prevention

a. The engine room and pump room, if applicable, must be fitted with a high-level bilge alarm(s), with at least two sensors (dual safety), preferably located at port and starboard side of the spacey, and these are to be regularly tested and maintained fully operational. If such installation is not yet fitted this shall be provided no later than the next dry dock.
b. In order to adhere to MARPOL Annex V/9.2 requirements, every ship of 100 gross tonnage and above and every ship which is certified to carry 15 persons or more shall carry a Garbage Management Plan which the crew shall follow.

c. Vessels on compliance with MARPOL Annex V9/3, which are not required to use a Garbage record book, must enter records in the ship's official Log Book or elsewhere in the form specified in the Annex.

d. A Garbage segregation culture needs to be visually implemented on board and followed on a daily basis.

e. In the case of extra hydraulic equipment used during projects, Subcontractors must be supplied with extra oil pollution equipment placed close to the machinery in proper containers and ready to be used.

3.3.20.6  Bulk Liquid Transfer & Pumping Operations

a. Storage and service bunker (IFO, MDO, MGO, etc.) tanks must be fitted with high level alarms.

b. No fuel oil with a flashpoint (closed cup) of less than 60°C must be transferred. This represents the current SOLAS limit; many fuel oils transferred offshore do not currently meet this limit, and a reduction to a limit of 55°C is anticipated.

c. Emergency Shut Down (ESD) for cargo pumps must be provided and located in the Cargo Control Room (if fitted), and on the main deck in the manifold area (P/S). If installation is not yet available it must be provided no later than the next dry dock.

d. In all case vessels carrying drilling mud must be completely aware of the hazards associated with this substance, ensuring that MSDS are available on board and crew members know of their existence. MSDS records from at least the last voyage must be kept on board as evidence.

e. All cargo and slop tanks must be fitted with a high-high level alarm (98%).

f. All control equipment, such as reference pressure gauge and thermometer, all other pressure gauges, vacuum gauges, thermometers, alarms, etc., shall be checked annually and results recorded.

   • At least one properly calibrated Tank atmosphere tester device (Oxygen & explosive gases) shall be placed on board, if Tank cleaning operations are likely. Evidence shall be provided by the Operator.

gh. All hoses on board must be provided with valid test certificates from the manufacturer. Additionally they must be routinely tested and results recorded as evidence. Routine tests shall consider values for pressure, elongation and conductivity.

   • Any transfer hoses loaded on board must be fitted with lifting saddles and stowed in racks. Loading and backload operations must be carefully supervised by a deck officer verifying that all hoses have been suspended in arrangements that avoid sharp bends and protrusions wherever possible.

   • Where fitted, the saddle and rack arrangement must be a permanent structure with appropriate foundations.

   • All lifting gear used in the hose arrangement must be certified and inspected on a periodic basis.

   • Correct couplings shall be used for the product(s) to be transferred.

h. The "UKOOA Safe Management and Operations of Offshore Support Vessel (BULK TRANSFER OPERATIONS)" and "Bulk Hose Best Practice" guidelines must be followed as a minimum requirement.
3.3.20.7 Other Languages

As identified in section 3.3.7.1 Marine Crew competence - English proficiency is compulsory for all Officers. However in circumstances where English is not the language in use onboard then official documentation such as log books and records are required to be filled-in in English in addition to the language stated within the ISM Code SMS as in force onboard and approved by the flag administration.

3.4 Mitigation Process to approve dispensations

For Vessels to be hired on Spot/Short term contracts, when the vessel does not meet all the Preliminary Vetting requirements to get an Acceptable status, the BU/RU/Project can sign a contract with a vessel rated as not-accepted, but subject to the events and process described at 'DG EP HSE Marine and River Vessels Contracts' or similar.

3.5 Reassessment for vessel rated as Not Accepted

For Vessels to be hired on Long Term contracts, when that vessel does not meet all the Preliminary Vetting requirements to get an Acceptable status, a Reassessment may be requested by the Offshore applicant, but being aware of:

- To be reassessed the vessel must undergo an inspection which must be based on OVID or Repsol Inspection. Either one may be chosen by Vetting.
- If the latest available inspection shows relevant observations, the Operator will be required to provide evidence that corrective actions have been taken before the inspection can be scheduled.
- Deficiencies detected during Preliminary evaluation must be addressed by the Operator and will be required to provide evidence that corrective actions have been taken before the inspection can be scheduled.
- Inspection must be carried out during daylight hours and without any Repsol cargo on board or Repsol passenger/workers if it is a crewboat, prior to lifting the contract subjects.

4 International reference regulations

- Standard 00-00462NO Managing safety and environment in sea and river operations and/or transport
- Minimum Requirement 051 MR 03341 MN EP Requirements for Marine & River Vessels Contracts
Guide
Division of Control, Innovation and Resources

Offshore Vessel Vetting Process
Type: Guide  Scope: Worldwide  Code: 90-00023GU
Owner: Division of Control, Innovation and Resources  Revision: 0.0

5 Appendices
Appendix I: References
Appendix II: Vetting criteria finder
Appendix III: Table Age
Appendix IV: Repsol HSE Checklist Marine Inspection
Appendix V: Definitions
Appendix VI: Acronyms
Appendix VI: Personnel Transfer devices
Appendix VII: Personnel Transfer devices
Appendix VIII: International Associations of Classification Societies – IACS Members
Appendix IX: International Group of P&I
Appendix X: The Vetting work flow
## Offshore Vessel Vetting Process

**Type:** Guide  
**Scope:** Worldwide  
**Code:** 90-00023GU

**Owner:** Division of Control, Innovation and Resources  
**Revision:** 0.0

### Appendix I: References

#### 1 International Rules and Conventions

- IMDG Code, International Maritime Dangerous Goods
- IMO Assembly Resolution A.1047(27) – Principles of Minimum Safe Manning
- IMO circular MSC/Circ.645 - Guidelines for Vessels with Dynamic Positioning Systems, 1994
- IMO Resolution A. 959(23) – Format and Guidelines for the Maintenance of the Continuous Synopsis Record (CSR), 2003
- IMO Resolution A.673(16) (as amended) – Guidelines for the Transport and Handling of Limited Amounts of Hazardous and Noxious Liquid Substances in Bulk in Offshore Support Vessels
- IMO Resolution A.741(18) (as amended) - International management code for the safe operation of ships and for pollution prevention (International Safety Management (ISM) Code).
- IMO Resolution A.761 (18) – Recommendation on Conditions for the Approval of Servicing Stations for Inflatable Liferafts, 1993
- IMO Resolution A.863(20) (as amended) - Code of safe practices for the carriage of cargoes and person by offshore supply vessels (OSV Code).
- IMO Resolution MSC.235 (82) - Adoption of the guidelines for the design and construction of offshore supply vessels, 2006 supersedes IMO Assembly resolution A.469(XII)
- IMO Resolution MSC/Circ. 1331 - Guidelines For Construction, Installation, Maintenance and Inspection/Survey of Means of Embarkation and Disembarkation
- IMO Resolution MSC/Circ.266(84) - Code of safety for special purpose ships, 2008
- ISPS Code, 2008
- LSA Code, International Life-Saving Appliance Code
- SOLAS, International Convention for the Safety of Life at Sea (SOLAS), 1974 as amended
2 Guidelines and Recommendations

- 46 CFR Code of Federal Regulations Chapter I, Subchapter K - SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS
- 46 CFR Code of Federal Regulations Chapter I, Subchapter L - OFFSHORE SUPPLY VESSELS
- 46 CFR Code of Federal Regulations Chapter I, Subchapter T - SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS)
- BUREAU VERITAS – Rules for the Classification of Offshore Units, 2010
- DET NORSKE VERITAS – Rules for Classification of Offshore Drilling and Support Units, 2013
- G9 OFFSHORE WIND HEALTH & SAFETY ASSOCIATION, The Safe Management Of Small Service Vessels Used In The Offshore Wind Industry 2014 (Consultation draft)
- Guidelines for Offshore Marine Operations 2013
- HSE Information Sheet No. 3/2006 - Guidance on Risk Assessment for Offshore Installations
- IMCA M117 Capacitación y Experiencia del Personal Clave de Posicionamiento Dinámico, 2006
- IMCA M140 Specification for DP Capability Plots, 2000
- IMCA M178 FMEA Management Guide, 2005
- IMCA M182 Guidelines for Safe Operation of Dynamically positioned Offshore Supply Vessels
- IMCA M189 Rev. 2, Marine Inspection for Small Workboats
- IMCA M190 Guidance for Developing and Conducting Annual DP Trials Programmes for DP Vessels, 2011
- IMCA M202 Guidance on the Transfer of Personnel and from Offshore Vessels, 2010
- IMCA M214 Mooring Practice Safety Guidance for Offshore Vessels when alongside in Ports and Harbours, 2012
- IMCA M219 Example Specification for a DP FMEA for a New DP Vessel, 2012
- IMCA SEL 022/M194 Guidance On Wire Rope Integrity Management For Vessels In The Offshore Industry, 2008
- IMCA SEL 08/01 Guidelines on Procedures for Transfer of Personnel by Basket on the UK Continental Shelf
Offshore Vessel Vetting Process

<table>
<thead>
<tr>
<th>Type: Guide</th>
<th>Scope: Worldwide</th>
<th>Code: 90-00023GU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner: Division of Control, Innovation and Resources</td>
<td>Revision: 0.0</td>
<td></td>
</tr>
</tbody>
</table>

- INTERTANKO – A Guide for Correct Entries in the Oil Record Book (Part II – Cargo/Ballast Operations), 2014
- LLOYDS REGISTER, Guidance Notes for Wind Turbine Installation Vessels 2013
- LLOYDS REGISTER, Rules and Regulations for the Classification of Offshore Units, 2014
- MARINE SAFETY FORUM – Bulk hose Best Practice Guidelines
- NORSOK – Marine Operations, 1997
- NWEA Guidelines for the Safe Management of Offshore Supply and Rig Move Operations
- NWEA Guidelines for the safety management of Offshore Supply and Anchor Handling Operations (NW European Area), version 1
- OCIMF – An Extended Scope for the Enhanced Survey Programme (ESP), 1999
- OCIMF – Guide to Purchasing High Modulus Synthetic Fibre Mooring Lines (joint SIGTTO publication), 2014
- OCIMF – Guidelines for the control of Drugs and Alcohol onboard ship, 1995
- OCIMF – Mooring Equipment Guidelines, 2008
- OCIMF – Offshore Loading Safety Guidelines with special relevance to harsh weather zones, 1999
- OCIMF – Offshore Vessel Operations in Ice and/or Severe Sub-Zero Temperatures. In Arctic and Sub-Arctic Regions, 2014
- OCIMF – Safe Transfer of Liquefied Gas in an Offshore Environment (STOLGOE), 2010
- OCIMF – Recommendations for the Tagging/Labelling, Testing and Maintenance, Documentation/Certification for Ships' Lifting Equipment, 2005
- OFFSHORE INSTALLATION No. 3117 - The Offshore Installations (Safety Case) Regulations 2005
- OILFIELD SEAMANSHIP – Towing, volume 4
Offshore Vessel Vetting Process

Type: Guide  Scope: Worldwide  Code: 90-00023GU

Owner: Division of Control, Innovation and Resources  Revision: 0.0

- UKOOA – Guidelines for the safe Packing and Handling of Cargo to and from Offshore Locations, 2008

3 Other External references

- Bourbon Offshore – OP1. 500m Zone Pre-Entry Checklist
- Bourbon Offshore – QHSE Anchor Handling / Towing Manual
- Chevron Upstream & Gas (U&G), Upstream Marine Standard
- Compliance Measurement Tr2351, Draft A, Version 1 "OFFSHORE CONSTRUCTION VESSELS" BOA SUB C
- ConocoPhillips COP-UMA-GOV-001, Marine Vetting and Audit Process Manual for Offshore Vessels
- DYNAMIC POSITIONING CONFERENCE – Annual Dynamic Positioning Trials for Dynamically Positioned Vessels. October 11-12, 2011
- NEW REGULATIONS FOR TOWING AND ANCHOR HANDLING VESSELS – 23rd International Tug, salvage & OSV Convention and Exhibit, Hamburg 2014
- NORSOK U-102 requirements, Documentation for verification of ROV systems
- Norwegian Oil and Gas Association recommended, 072- Guidelines for Acceptance Criteria for Offshore Service Vessels
- NOU Official Norwegian Reports – The loss of the “Bourbon Dolphin” on 12 April 2007
- Statoil, TR2351 2012 Offshore construction vessels
- VRYHOF – Anchor Manual, 2005
Appendix II: Vetting criteria finder

<table>
<thead>
<tr>
<th>Number</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>OVPQ Date of completion</td>
<td>4/1/2012</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Date delivered</td>
<td>4/1/1981</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Gross Tonnage</td>
<td>369</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Length overall - LOA</td>
<td>34.5</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Extreme breadth</td>
<td>30</td>
</tr>
<tr>
<td>15.1.1</td>
<td>DP notation</td>
<td></td>
</tr>
<tr>
<td>5.4.1</td>
<td>Crane(s) fitted on board</td>
<td>0</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>Man-riding capability</td>
<td>N</td>
</tr>
<tr>
<td>5.2.1</td>
<td>FiFi equipment</td>
<td>F</td>
</tr>
<tr>
<td>14.1</td>
<td>Classification Society</td>
<td></td>
</tr>
<tr>
<td>5.2.4</td>
<td>FiFi notation issued by a</td>
<td></td>
</tr>
<tr>
<td>10.1.1</td>
<td>Is vessel/unit certified for</td>
<td></td>
</tr>
<tr>
<td>5.1.9</td>
<td>Common language used on board</td>
<td>ENG, ESP</td>
</tr>
</tbody>
</table>
## Appendix III: Table Age

<table>
<thead>
<tr>
<th>YEARS &lt;1</th>
<th>YEARS 1-5</th>
<th>YEARS 5-15</th>
<th>YEARS 15-20</th>
<th>YEARS &gt;20</th>
<th>YEARS &gt;50</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO VESSEL VOYAGE</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
<td>Rejected Observations</td>
</tr>
<tr>
<td>Inadequate Risk Assessments</td>
</tr>
<tr>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
<td>NO/OVD Inspection</td>
</tr>
</tbody>
</table>
## Appendix IV: Repsol HSE Checklist Marine Inspection

<table>
<thead>
<tr>
<th>Area</th>
<th>Checklist Item</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISM Code</td>
<td>Emergency procedures, drills and company's 24/7 availability is documented and readily available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>Newly signed on crew members have gone through safety familiarization and required training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>There is a safety officer onboard and records of accidents and dangerous occurrences are available, if not are these accesible from the the company through a safety representative or the Master</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORK ACTIVITIES</td>
<td>Where the ship has determined a permit-to-work system should be used, is there evidence of its correct implementation on board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - Access control procedures implemented</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - Arrangements for securing and controlling restricted areas are in place as per SSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - Restricted areas are clearly identified and marked as per SSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - All security equipment well maintained and tested according to SSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - Drills are carried out regularly as per ISPS Code and SSP. Records maintained and available for inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Code</td>
<td>ISPM Code - Maritime security - Ship Security Alert System (SSAS) is operational and records for tests and maintenance are available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Inductions</td>
<td>All new personnel joining the vessel are able to demonstrate competence in personal safety and social responsibilities through an approved instruction (non-passengers) from a responsible officer or during participation in an approved course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musters and drills</td>
<td>Crew members have participated in at least one abandon ship drill and one fire drill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musters and drills</td>
<td>Musters have taken place within 24 h of the ship leaving a port if more than 25% of the crew were not participating in abandon ship and fire drills onboard that particular trip in the previous month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musters and drills</td>
<td>Musters lists exhibited in conspicuous places throughout the ship including the navigating bridge, engine room and crew accommodation spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musters and drills</td>
<td>Illustrations and instructions in appropriate languages are posted in passenger cabins and displayed at muster stations and other passenger spaces (including near each seat for High Speed Craft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix V: Definitions

Active component, defined in DP systems as generators, thrusters, switchboards, remote controlled valves, coolers, etc. In addition includes any static component such as cables, pipes, manual valves etc., which are not properly documented with respect to protection and reliability.

Base Manager, person responsible for operations on the shore base.

BBUU/RRUU/Project Directors, BU/RU/Project Directors are responsible for approving dispensations for vessels that were not approved in the preliminary Vetting evaluation for Spot/Short term contracts. This may apply where the service is required urgently.

Bollard pull, the towing vessel's pull normally specified as maximum continuous pull.

Bridges, where some larger vessels (for example heavy-lift, pipelay, and accommodation flotels) have long (around 50m) bridges to effect transfer personnel see “Annex 3 Personnel Transfer devices”.

Bridle towing arrangement, two wires or chains of equal length arranged as a triangle that connects the towed object to the vessel towing it.

Catenary curves, specification of towline and anchor line curvature for various loads.

Chafe Chain, short length of chain in way of fairleads to minimize wear on wire or rope bridle components.

Chain tail, a short length of chain consisting of two or more links

Chasers, to facilitate handling, pendant wires may be applied to retrieve the anchor. These wires are connected to a pendant eye situated on the anchor and equipped with a buoy for picking up. In deeper water higher anchor break-out forces are encountered, resulting in longer, heavier pendant wires and consequently larger buoys. Due to wear caused by the continuous movement of the buoy by the waves, these pendants will break close to the buoy. The buoys may then float free and the anchors are much more difficult to recover. To overcome this, chasers were introduced. These were rings ‘chased’ along the cable towards the anchor and back again to a rig or handling vessel. Their function was to ensure both installation and break-out of the anchor without having to use a pendant line/buoy. The chaser system thus totally eliminates buoys, partly eliminates cables and reduces wear on the system.

Cherry-picking, selective discharge of cargo from within the stow.

COA, vessels included in a contract of affreightment to lift a fixed or determinable quantity of cargo of a specified type over a given period of time.

Coating condition, is to be evaluated, as clarified within IACS Recommendation 87, June 2004, and categorized as either:

- GOOD: Condition with spot rusting on less than 3% of the area under consideration without visible failure of the coating. Rusting at edges or welds, must be on less than 20 % of edges or weld lines in the area under consideration.
- FAIR: Condition with breakdown of coating or rust penetration on less than 20 % of the area under consideration. Hard rust scale rust penetration must be less than 10% of the area under consideration. Rusting at edges or welds must be on less than 50 % of edges or weld lines in the area under consideration.
Offshore Vessel Vetting Process

- **POOR**: Condition with breakdown of coating or rust penetration on more than 20% or hard rust scale on more than 10% of the area under consideration or local breakdown concentrated at edges or welds on more than 50% of edges or weld lines in the area under consideration.

These clarifications are further exemplified via photos along with narrative descriptions of the condition, uniform and localised assessment scales, contained within IACS Rec. 87 Appendices H1 while a "Library of pictures" is provided in Appendix H2.

**Condition Assessment Programme (CAP)** is a voluntary programme to document the quality of a vessel beyond the normal scope of Classification Societies. Covering different areas; Hull, Machinery, Cargo Systems, cargo containment systems etc., and rating each.

**Continuous Synopsis Record (CSR) of Ships**, is a special measure under Safety of life at sea (SOLAS) for enhancing the maritime security at the sea. According to SOLAS Chapter I (CSR is mentioned in SOLAS –Chapter XI-1 regulation 5), all passenger and cargo ships of 500 gross-tonnage and above must have a continuous synopsis record on board. CSR is issued by the administration of the ship which flies its flag and shall always be kept on board ship and shall be available for inspection at all times.

**Coxswain**, generic term for person in charge of a small craft.

**DARPS**, is a position reference system that offers a combination between absolute and relative positions. There are various differential correction signals which including but not limited to; UHF, InMarsat, Spotbeam HP and IALA. Each DARPS has one GPS antenna and could be corrected using one or several differential correction methods before mentioned.

**Dynamically positioned vessel (DP Vessel)**, means a unit or a vessel which automatically maintains its position (fixed location or predetermined track) exclusively by means of thruster force.

**Gog (or Gob) Wire**, wire used to control movement of main tow line when vessel is engaged in towing operations.

**Gypsy**, wheel with machined pockets for hoisting chains fitted on a winch.

**Heavy Grade**, for the purpose of this procedure, means:

- crude oils, having a density at 15º C higher than 900 kg/m³;
- oils, other than crude oils, having either a density at 15º C higher than 900 kg/m³ or a kinematic viscosity at 50 º C higher than 180 mm²/s; or;
- Bitumen, tar and their emulsions.

**Heavy Lift**, every lift which is equal to or greater than 75% of the crane’s SWL or 25MT whichever is less, will be considered as Heavy Lift.

**ISM (International Safety Management Code)** is the International Management Code for the Safe Operation of Ships and for Pollution Prevention as adopted by IMO.

**J-chaser**, Hook used by anchor handling vessels to "fish" the installation’s anchor lines.

**Kenter link**, Device for linking two chain lengths.

**Lloyd’s Marine Intelligence Unit**, is an online maritime information database published at [www.lloydsmiu.com](http://www.lloydsmiu.com) that provides detailed and up-to-date vessel data (movements, ownership, characteristics, and casualties), port information and in-depth company information (credit reports). The site incorporates (AIS) vessel tracking network,
and is underpinned by the shipping information database (SID), which contains details of vessels, shipping companies, and comprehensive information on all of the world’s commercially active ports.

**Mandatory** means criteria acting as key points (Process terminology).

**Maritime Exclusion Zone**, an area established around an installation or structure under which surface operational facilities are located, including sub-sea wellheads, pipelines and mooring buoys. Appropriate measures must be taken within it to ensure the safety of both navigation and of the installation or structure.

**Mechanical Means of Rescue (Recovery)**, arrangements installed on a Stand-By Vessel to facilitate rescue of survivors from the sea in circumstances where rescue craft cannot safely be deployed or recovered. Proprietary designs include the Dacon Scoop and Sealift Basket.

**Mechanical Stopper**, device for temporarily securing chains or wires to facilitate safe connection or release. Proprietary designs include the Karm Forks and Triplex Stopper.

**Offshore Vessel Management and Self-Assessment (OVMSA)**, it is applicable as established in the present Marine Safety Criteria as defined in OCIMF publication “Offshore Vessel Management and Self-Assessment, a best-practice guide for Offshore Vessel Operators”.

**Operator**, the owner of a service vessel or any other organization or person such as the manager or the bareboat charterer, who has assumed the responsibility for operation of the vessel from the vessel owner, and has agreed to take over all the duties and responsibilities imposed by the ISM code and, where applicable, hold the Document of Compliance.

**P and I CLUB**, Protection and Indemnity Clubs cover a wide range of liabilities including personal injury to crew, passengers and others on board, cargo loss and damage, oil pollution, wreck removal and dock damage. Clubs also provide a wide range of services to their members on claims, legal issues and loss prevention, and often play a leading role in the management of casualties. The current member list may be checked at [http://www.igpandi.org/Group+Clubs](http://www.igpandi.org/Group+Clubs).

**Pear link**, device for linking two different chain dimensions.

**Pendant**, wire hanging permanently attached to the installation used for chasing out anchors.

**Pennant wire**, buoy wire; wire from the seabed up to a buoy on the surface.

**Permanent chaser**, collar through which an anchor chain runs, to which recovery pendant wire is attached.

**Personnel Transfer Basket**, equipment utilised for transferring personnel by crane. May also be referred to as Personnel Carrier. (For more details see annex 3)

**Piggyback anchor**, any additional anchor connected to the primary when the latter anchor has insufficient holding capacity.

**Piggy-back**, is the practice of using two or more anchors in order to obtain holding power greater than can be achieved with one only.

**Pigtail**, short chain or wire with open end links.

**Port State Control**, the inspection of foreign ships in national ports to verify that the condition of the ship and its equipment comply with the requirements of international regulations and that the ship is manned and operated in compliance with these rules. These inspections are intended to be a backup to flag State Inspection; many of IMO’s most important technical conventions contain provisions for ships to be inspected when they visit foreign ports to
ensure that they meet IMO requirements. All findings related to the above inspections will be cleared under operator’s time.

**Redundancy**, the ability or possibility of a component or system to maintain or reestablish its function following a failure.

**Repsol Vetting Department**, the technical unit within Repsol responsible for establishing guidelines for safety and environment evaluation process for each type of vessel moving in the Repsol system, monitor compliance with the rules applicable to them and manage the preliminary assessments and physical inspections when required.

**Safe Haven**, is defined as a harbor or shelter of any kind which affords safe entry and protection from the force weather.

**Safety Zone**, 500-metre radius around an installation, structure or principal vessel(s) conducting marine operations or wind farm field limits, with an enforceable safety zone and traffic restrictions within it, defined and enforced by OIM or Marine Coordination. The definition of enforceable safety zones must consider at least:

- location and status of anchors and anchor lines;
- pipelines:
- operation mode of DP vessels:
- presence of divers:
- bubble curtains in use;
- lifting operations; and
- hot work / smoking restrictions

**SDWT**, summer deadweight tonnage means the number of tonnes of cargo and bunkers, including stores, lubricating oil and fresh water that a vessel can transport on a summer draft.

**Shark’s Jaws**, see "Mechanical Stopper" above.

**Simultaneous Operations**, in the context of this document two or more vessels supporting the same or different operations within the safety zone around an offshore facility.

**Small Craft**, for the purpose of this document defined as workboats which are used worldwide and are less than 100 gross tonnage regardless of any other criteria such as length or distance to/from a safe haven. These are in commercial use and may be used for various appropriate tasks within the Offshore Wind or Oil Industry, other than: oil recovery, surveying, dredging, diving operations, towing operations, or personnel transfer when the capacity required would be for more than 15 passengers, which is regulated by a specific rule in this OVVP. Therefore they do not require an International Safety Management, an International Ship Security certificate, or compliance with a specific regulation, although the principles outlined in the above codes are worth following.

**Socket, Wire Rope**, any manufactured end termination fitted to the end of a wire rope to facilitate the connection of other rigging elements.

**Spooling gear**, arrangement to guide wire onto drum.

**StandBy Vessel**, any vessel mobilized to provide response and rescue support at one or more offshore facilities. Such support will primarily involve the rescue of personnel from the sea and their subsequent care. It may also
include firefighting. May also be referred to as "Emergency Response and Rescue Vessel", "Safety Stand-By Vessel" or "Stand-By Safety Vessel".

**Stern roller**, large roller on the stern of an anchor handling vessel to facilitate the recovery or deployment of moorings or other equipment.

**Stinger**, in the context of this document the pennant installed on the crane's hook to facilitate the safe connection and release of the lifting rigging on any item of cargo. A suitable safety hook will be fitted to the lower end of the pennant.

**Substantial corrosion**, the extent of corrosion such that assessment of corrosion pattern indicates a wastage in excess of 75% of allowable margins, but within acceptable limits, as recorded in the latest class survey status.

**Summer draft**, is the vertical distance between the summer load line and the bottom of the hull.

**Swivel**, connecting link or device used to prevent development of twists in wire or chain cables.

**Tension control**, control facility to enable winch to be set to pull in or pay out at a specified tension.

**Tow eye/Towline guide**, arrangement for keeping towline in centre line or midship area.

**Towing pins/guide pins**, device for guiding towline or pennant wire.

**Towing winch**, similar to a working winch, often geared differently. Newer towing winches have drums smaller than working winches.

**Towline**, wire on towing winch used for towing.

**Trigger Point**, threshold, generally relating to environmental conditions, prompting review and/or risk assessment relating to the continuation or suspension of present operations.

**Tugger winch**, winch provided to move items laterally on the deck of an offshore support vessel. May also be used to secure such items whilst in transit. May have remote control on newer vessels, or may be controlled from the bridge on some vessels.

**Tugger wire**, steel or fibre wire used for tugger winch.

**Vessel Reference System**, is a modular method of integrating your positioning, velocity, and motion measurements.

**Vetting Assessment**, the process whereby vessel suitability for Repsol use is determined resulting in the status of "Acceptable" or "Not Accepted" being assigned. Ship-shore compatibility or fitness for nominated cargo is not considered in this Assessment.

**Weight**, means criteria which cannot be pre-qualified and that weight should be weighed up by different components as Age, Class, Casualty reports, Detention, Flag reports, etc., so it is totally necessary a Vetting expert to analyze them. (Process terminology)
Appendix VI: Acronyms

AHTS Anchor Handling Tug Supply Vessel
AHV Anchor handling vessel
AIS Automatic Identification System
BDEU Database of the vessels used or usable by the DG E&P, managed by the Vetting Unit
BOSIET Basic Offshore Safety Induction and Emergency Training
BBUU Business Units
BP Bollard Pull
BRM Bridge Resources Management
BTM Bridge Team Management
BU Business Unit
CA Condition of Authorities (Class terminology)
CAP Condition Assessment Programme
CAS Condition Assessment Scheme
CC Condition of Class (Class terminology)
CCR Cargo Control Room
CMID Common Marine Inspection Document
COA Contract of Affreightment
COC Certificate of Competency
COLREGS International Regulations for Prevention of Collisions at Sea, 1972
CSR Continuous Synopsis Record
DARPS Differential Absolute and Relative Positioning Sensor
DGPS Differential Global Positioning System
DP Dynamic Positioning
DPO Dynamic Positioning Operator
ECDIS Electronic Chart Display and Information System
ECR Engine Control Room
EOW Engineer Officer of the Watch
EQUASIS European Quality Shipping Information System
ERP Emergency Response Plan
ERRV Emergency Response and Rescue Vessel
Offshore Vessel Vetting Process

Type: Guide
Scope: Worldwide
Code: 90-00023GU

Owner: Division of Control, Innovation and Resources
Revision: 0.0

ESD Emergency Shut Down
ESP Enhanced Survey Programme
FME(C)A Failure Modes, Effects And Criticality Analysis
FMEA Failure Mode and Effect Analysis
FRC Fast Rescue Craft
FSVAD Flag state Verification and Acceptance Document
GMDSS Global Maritime Distress and safety System
GPS Global Positioning System
HAZID Hazard Identification
HAZOP Hazardous Operations (Assessment)
HIPAP High Precision Acoustic Positioning
HPR Portable Hydroacoustic Position Reference
HSE Health, Safety and Environment
IACS International Association of Classification Societies
IADC International Association of Drilling Contractors
IAGC International Association of Geophysical Contractors
IALA International Association of Lighthouse Authorities
IBC International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals (IBC Code)
ILO International Labour Organisation
IMCA International Marine Contractors Association
IMO International Maritime Organization
ISM International Safety Management Code
ISPS International Ship and Port Facility Security Code
JSA Job Safety Analysis
MARS Mariners' Alerting and Reporting Scheme
MARPOL International Convention for the Prevention of Pollution from Ships
MCA Maritime and Coastguard Agency UK
MO Memo to Owners (Class terminology)
MOC Management of Change (Process terminology)
MRU Motion Reference Unit (DP terminology)
MSDS Material Safety Data Sheet
Offshore Vessel Vetting Process

Type: Guide
Scope: Worldwide
Code: 90-00023GU

Owner: Division of Control, Innovation and Resources
Revision: 0.0

NMEA Network communication form
NORSOK Competitive Standing of the Norwegian Offshore Sector
NWEA North West European Area
OCIMF Oil Companies International Marine Forum (Trade association for major oil companies engaged in marine activities)
OGP International Association of Oil & Gas Producers (formerly E&P Forum)
OIM Offshore Installation Manager
OLF Norwegian Oil Industry Association
OOO Officer of the Watch
OSV Offshore Support Vessel
OVID Offshore Vessel Inspection Database (Sponsored by OCIMF)
OVIQ Offshore Vessel Inspection Questionnaire
OVMSA Offshore Vessel Management Self-Assessment
OVPQ Offshore Vessel Particular Questionnaire
OVVP Repsol Offshore Vessel Vetting Process
PCWBT Protective Coatings in Water Ballast Tank
PFEER Prevention of Fire and Explosion, and Emergency Response
PIC Person In Charge
PM Planned Maintenance (System)
PMS Power Management System
PPE Personal Protective Equipment
PSA Petroleum Safety Authority
PSC Port State Control
PSV Platform Supply Vessel
PTW Permit to Work
RA Risk Assessment
ROV Remotely Operated Vehicle
SBV Stand-By Vessel
SIGTTO Society of International Gas Tanker and Terminal Operators
SIMOPS Simultaneous Operations
SMC Safe Manning Certificate
SMPEP Shipboard Marine Pollution Emergency Plan
Offshore Vessel Vetting Process

Type: Guide  Scope: Worldwide  Code: 90-00023GU

Owner: Division of Control, Innovation and Resources  Revision: 0.0

SMS Safety Management System
SOLAS International Convention for the Safety of Life at Sea (IMO Convention 1974 and as subsequently amended)
SOW Scope of Work
SPSS Special Purpose Ship Safety Certificate
SSV "Safety Stand-By Vessel" or "Stand-By Safety Vessel"
STCW International Convention for Standards of Training, Certification and Watchkeeping for Seafarers (IMO Convention 1978 and as subsequently amended)
STOLGOE Safe Transfer of Liquefied Gas in an Offshore Environment (OCIMF publication)
SWL Safe Working Load
TMR Thickness Measurement Report
UKOOA United Kingdom Offshore Operators Association / UK Oil & Gas
UPS Uninterrupted Power Supply
VHF Very High Frequency [radio]
VRS Vertical Reference System (DP terminology)
VRU Vertical Reference Unit (DP terminology)
WOAD World Offshore Accident Databank
Appendix VII: Personnel Transfer devices

Subject to local regulations, and company procedures, basket transfers by personnel baskets to or from vessels or offshore structures can be undertaken using a number of different devices. The three main devices used today are:

- **Billy Pugh**, the oldest personnel transfer basket design, in which personnel are transferred while holding onto the outside of the lifted structure.

  ![Personnel transfer using a 'Billy Pugh' device](Photo: Approaches to Gimboa FPSO, boarding VLCC “Al Shegaya”)

- **Esvagt**, a rigid framed construction with buoyancy ring and fenders, in which personnel stand inside the basket.

  ![Personnel transfer using an 'Esvagt' device](Photo: boarding on Gimboa FPSO)
• **Personnel transfer capsule**, a rigid framed device with buoyancy panels, in which personnel sit strapped in bucket seats.

  ![Personnel transfer using a personnel transfer capsule](Photo: from IMCA M202)

In some situations, basket transfer may be the only feasible means of transferring personnel at sea. All basket transfers must be considered a high-risk operation at all times and they must only be undertaken when transfer is essential and cannot be undertaken by other means.

• **Accommodation ladders**, Gangways and accommodation ladders are the primary means by which personnel transfer between a vessel and the quayside, and occasionally from one vessel or offshore structure to another. There is a wide variation in types, but all of them must be constructed of appropriate material, and fitted with non-slip walkways and handrails. Appropriate certification must be required. They must be adequately lit along their full length. Gangways and ladders must not be used at angles of inclination which render their use unsafe.

  ![Personnel transfer using an accommodation ladder](Photo: from marine aluminium web site)
• **Hydraulic gangways**, these are purpose-designed gangways mounted on a vessel which connect to another vessel/offshore structure to allow personnel to pass safely across. They are fitted with hydraulic heave compensation which adjusts the gangway length and/or horizontal/vertical angles to compensate for the vessel relative movement. Such equipment may also be fitted with a ‘traffic light’ system.

![Figure 7. Personnel transfer using a purpose-designed hydraulic gangway](Photo: from IMCA M202)

• **Bridges**, some larger vessels have long bridges to effect transfer of personnel. These can be fixed at one end and slide on rollers at the other end to allow for relative movement. Such equipment can also be hydraulically controlled and can be lifted into place and supported by a crane or else have its own dedicated support mechanism. They may be fitted with alarm systems activated by a certain amount of movement. The bridges and the personnel crossing them must be closely monitored and controlled.

![Figure 8. Personnel transfer using a hydraulic bridge](Photo: from marine aluminium web site)
Swing ropes, are completely forbidden for personnel transfer.

Figure 9. Transferring workers via swing ropes, in the Gulf of Guinea area.
Appendix VIII:  International Associations of Classification Societies – IACS Members

- ABS. American Bureau of Shipping
- BV. Bureau Veritas
- CCS. China Classification Society
- CRS. Croatian Register of Shipping
- DNV GL. Det Norske Veritas Germanischer Lloyd *
- IRS. Indian Register of Shipping
- KR. Korean Register of Shipping
- LRS. Lloyd’s Register of Shipping
- NK. Nippon Kaiji Kyokai
- PRS. Polish Register of Shipping
- RINA. Registro Italiano Navale
- RS. Russian Maritime Register of Shipping
Appendix IX:  International Group of P&I

- American Steamship Owners Mutual Protection and Indemnity Association, Inc
- Assuranceforeningen Skuld
- Gard P&I (Bermuda) Ltd.
- The Britannia Steam Ship Insurance Association Limited
- The Japan Ship Owners' Mutual Protection & Indemnity Association
- The London Steam-Ship Owners' Mutual Insurance Association Limited
- The North of England Protecting & Indemnity Association Limited
- The Shipowners' Mutual Protection & Indemnity Association (Luxembourg)
- The Standard Club Ltd
- The Steamship Mutual Underwriting Association (Bermuda) Limited
- Sveriges Ångfartygs Assurans Förening / The Swedish Club
- United Kingdom Mutual Steam Ship Assurance Association (Bermuda) Limited
- The West of England Ship Owners Mutual Insurance Association (Luxembourg)
Appendix X: The Vetting work flow
Guide
Division of Control, Innovation and Resources

Offshore Vessel Vetting Process
Type: Guide  Scope: Worldwide  Code: 90-00023GU

Owner: Division of Control, Innovation and Resources  Revision: 0.0

Approval

Validity
1st January 2015

Revoked regulation
First release

General and temporary provisions
Any user of this document who encounters a mistake or confusing entry is requested to notify the Author, as detailed on the Document Control Sheet.

The Owner will review this document at least annually and retain documentary evidence that the review has taken place according to the Repsol Vetting Document Management Procedure. Triggers for further review may include:

• Changing scope of application.

• Reviews or audits which identify shortfalls in an existing procedure.

• Revisions of OVVP requirements sanctioned by Repsol.

Revision 0.0 approved by:

Division of Control, Innovation and Resources